rberga06.utils.plugin.system.System#

class rberga06.utils.plugin.system.System(*, name: str, version: Version, package: str, Features: type[_F], path: list[Path] = None, plugins: dict[str, Plugin] = None, info_file: str = '.plugin.yml')#

Bases: BaseModel, Generic[_F]

A plugin system.

__init__(**data: Any) None#

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

compat_ensure(obj, /)

Make sure the given plugin is compatible with self.

compat_eval(spec, /)

Evaluate compatibility with the given spec.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

dict(*[, include, exclude, by_alias, ...])

discover()

Discover compatible plugins at self.path (and register them).

discover_all()

Run and exhaust self.discover() and return self.

extend_path(*paths)

Extend self.path with the given paths.

extend_path_pkg(ns)

Extend self.path with the given (namespace?) package.

from_orm(obj)

json(*[, include, exclude, by_alias, ...])

load(plugin)

Load the given plugin (in-place).

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Returns a copy of the model.

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.2/usage/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.2/usage/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(_BaseModel__context)

Override this method to perform additional initialization after __init__ and model_construct.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Validate the given JSON data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

register(plugin)

Register the given plugin.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

update_forward_refs(**localns)

validate(value)

Attributes

model_computed_fields

Get the computed fields of this model instance.

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

model_fields_set

Returns the set of fields that have been set on this model instance.

name

version

package

Features

path

plugins

info_file

compat_ensure(obj: Plugin | Spec, /) Plugin | Spec#

Make sure the given plugin is compatible with self.

compat_eval(spec: str, /) bool#

Evaluate compatibility with the given spec.

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:
include: Optional set or mapping

specifying which fields to include in the copied model.

exclude: Optional set or mapping

specifying which fields to exclude in the copied model.

update: Optional dictionary of field-value pairs to override field values

in the copied model.

deep: If True, the values of fields that are Pydantic models will be deep copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

discover() Iterator[Plugin]#

Discover compatible plugins at self.path (and register them).

discover_all() Self#

Run and exhaust self.discover() and return self.

extend_path(*paths: Path | str) Self#

Extend self.path with the given paths.

extend_path_pkg(ns: module | str) Self#

Extend self.path with the given (namespace?) package.

load(plugin: Plugin) Plugin#

Load the given plugin (in-place).

property model_computed_fields: dict[str, ComputedFieldInfo]#

Get the computed fields of this model instance.

Returns:

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values

Args:

_fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model#

Returns a copy of the model.

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any]#

Usage docs: https://docs.pydantic.dev/2.2/usage/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects.

include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that are unset or None from the output. exclude_defaults: Whether to exclude fields that are set to their default value from the output. exclude_none: Whether to exclude fields that have a value of None from the output. round_trip: Whether to enable serialization and deserialization round-trip support. warnings: Whether to log warnings when invalid fields are encountered.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str#

Usage docs: https://docs.pydantic.dev/2.2/usage/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. Can take either a string or set of strings. exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that have the default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: Whether to use serialization/deserialization between JSON and class instance. warnings: Whether to show any warnings that occurred during serialization.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields: ClassVar[dict[str, FieldInfo]] = {'Features': FieldInfo(annotation=type[~_F], required=True), 'info_file': FieldInfo(annotation=str, required=False, default='.plugin.yml'), 'name': FieldInfo(annotation=str, required=True), 'package': FieldInfo(annotation=str, required=True), 'path': FieldInfo(annotation=list[Path], required=False, default_factory=list), 'plugins': FieldInfo(annotation=dict[str, Plugin], required=False, default_factory=dict), 'version': FieldInfo(annotation=Version, required=True)}#

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

property model_fields_set: set[str]#

Returns the set of fields that have been set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(_BaseModel__context: Any) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to raise an exception on invalid fields. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model#

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator.

Returns:

The validated Pydantic model.

Raises:

ValueError: If json_data is not a JSON string.

register(plugin: Plugin) Plugin#

Register the given plugin.